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Digressions: the GSS dataset

For five decades, the General Social Survey (GSS) has studied the
growing complexity of American society. It is the only
full-probability, personal-interview survey designed to monitor
changes in both social characteristics and attitudes currently being
conducted in the United States.
▶ GSS official website

https://gss.norc.org/About-The-GSS
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How to explore the relationship between two variables

▶ Suppose there are two variables: Y representing wages, and X
representing years of education.

▶ We are interested in “explaining Y in terms of X,” or in
“studying how Y varies with changes in X.”

▶ Suppose we can observe a group of data, indexed by
1, 2, . . . , n:

(X1,Y1), (X2,Y2), . . . , (Xn,Yn)

▶ How would we get the sample above in reality?
* RCT
* Sample survey: the Quarterly Labour Force Survey (QLFS)

database (randomly drawing 6, 550 people from the working
population)

* Administrative data
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How to explore the relationship between two variables
▶ Y is often called dependent variable, outcome variable,

explained variable, and predicted variable.
▶ X is often called independent variable, regressor, explanatory

variable, and covariate.

Figure 1: Terminology for simple regression
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How to explore the relationship between two variables

▶ Draw a scatter figure of Y and X for 12 artificial observations:

Figure 2: Relationship between wages and years of education

▶ Question of interest: Can I generate some general rules based
on my observations?
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How to explore the relationship between two variables

▶ A natural way to explore the relationship between wages and
years of education, is to add a best fitted line on the figure
such that all points are “closely” enough to the line.
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OLS
▶ The mathematical way to write down a line:

y = β0 + β1x

▶ In our wage and education example, we are trying to write a
line as:

ˆwage = β0 + β1edu

▶ Then, the original wage level is:

wage = ˆwage+ u
= β0 + β1edu + u

▶ The definition of “closely” / “bested fitted”:

min
∑

i
(wagei − ˆwagei)

2 ≡ min
∑

i
(ui)

2

▶ the method to get β0 and β1: Ordinary Least Square (OLS)
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Implement OLS in Stata
▶ The command regression can be used to obtain the

coefficients of the best fitted line. Type

reg wage edu

Figure 3: Regression results
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Implement OLS in Stata
▶ The best fitted line is:

wage = −128.0852+ 115.65 ∗ edu

▶ and the corresponding plot in the figure is

Figure 4: Fitted line
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Understanding the regression results

Std.err.
▶ It is short for “Standard error”
▶ Basically it tries to evaluate how accurate our estimation is.
▶ The smaller, the better.

The coefficients and standard errors are the most common things
that authors will report in their paper.
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Understanding Std.err.
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Figure 5: Sample with small and large variance
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Understanding the regression results

t, P>|t|, 95% conf.interval
▶ t: t-statistics

t = β

Std.err.
▶ P>|t|: p-value, calculated by t-statistics

* helps us to identify the “significance level”
* the smaller, the better
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Understanding the regression results

t, P>|t|, 95% conf.interval
▶ 95% conf.interval:

* We have 95% confidence that the true coefficient lies within
this interval.
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Understanding the regression results

▶ t-statistics, P > |t|, and 95% confidence intervals: measure
how confident we can say that explanatory variable does
impact on explained variables.

|t| ↑ ⇒ more confident
P > |t| ↓ ⇒ more confident

0 is far from 95% confident intervals ⇒ more confident
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Understanding the regression results

The upper-right corner
▶ R-squared: the proportion of wage variation that can be

explained by edu variation.
▶ Prob > F: the overall significance level of this model. The

smaller, the better
▶ Root MSE: root of MSE

MSE =
1
n

N∑
i=1

(wagei − ˆwagei)
2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Understanding the regression results

The upper-left table
▶ df: degree of freedom

* Regression df: he number of independent variables in our
regression model (just edu)

* Residual df: total number of observations of the dataset
subtracted by the number of variables being estimated (12-2)

▶ SS: sum of squares
▶ MS: mean squared errors
▶ R-squared = ModelSS/TotalSS

External resources: How to read a regression table

https://www.freecodecamp.org/news/https-medium-com-sharadvm-how-to-read-a-regression-table-661d391e9bd7-708e75efc560/ 
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Multi-variate linear regression

▶ Education level (schooling years) is not the only determinant
for people’s future earnings.

▶ Mincer earnings function:

log(wage) = β0 + β1schooling + β2exp + β3expsq

▶ This seems more complex, but the simple reg command can
help us get β0, β1 and β2 all at once.

reg log_wage edu exp exp_sq
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How to interpret β1?
▶ Recall the linear regression models

Y = β0 + β1X + β2Z + β3W + u
▶ Fix u, W, Z,

Y = β0 + β1X + β2Z + β3W + u
Y +∆Y = β0 + β1(X +∆X) + β2Z + β3W + u
⇒ ∆Y = β1∆X

⇒ β1 =
∆Y
∆X

▶ Thus, if we fix u and Z and W (that is, holding experience
and other factors unchanged), β1 measures the impact of one
unit increment of X on Y.

▶ If Y is the (log)wage measured in dollars per month and X is
years of education, then β1 measures the change in monthly
wage given another year of education, holding all other
factors, including experience, fixed.
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Implement multi-variate OLS in Stata

▶ Now, it is time to try by your self! Use our South African
Labour Force data,

reg logwage edyears exp exp_sq


	Explore the relationship between Y and X
	Linear regression models

