
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Development Data Boot Camp
Intro to Stata: Basic Programming

Ge Sun

University of Notre Dame

May 18, 2023

Outline

Conditional evaluation

Scalar and matrices

Macros

Loops

. .

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Conditional evaluation

Scalar and matrices

Macros

Loops

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to “if”

▶ In some cases, we want to take actions to a sub-sample of the
database.

* Example from yesterday’s exercise:
What the average population level of villages in the rural area?

sum Ctot_p if tru == “Rural”
▶ if qualifier restricts the scope of a command to those

observations for which the value of the expression is true.
▶ How would a computer express what is true?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to “if”

▶ In some cases, we want to take actions to a sub-sample of the
database.

* Example from yesterday’s exercise:
What the average population level of villages in the rural area?

sum Ctot_p if tru == “Rural”
▶ if qualifier restricts the scope of a command to those

observations for which the value of the expression is true.

▶ How would a computer express what is true?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to “if”

▶ In some cases, we want to take actions to a sub-sample of the
database.

* Example from yesterday’s exercise:
What the average population level of villages in the rural area?

sum Ctot_p if tru == “Rural”
▶ if qualifier restricts the scope of a command to those

observations for which the value of the expression is true.
▶ How would a computer express what is true?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conditional expression

▶ A conditional expression is a judgement to a statement
* The statement is true: return 1
* The statement is false: return 0

▶ this 1 and 0 are not simple numbers (they are often called
“boolean”), they are logic statement, expressing whether the
statement is true

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conditional expression

How should we ask Stata to judge a statement?
▶ greater than : >
▶ smaller than : <
▶ equal to : ==
▶ not less than: >=
▶ not greater than: <=
▶ not equal to: !=

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: “==” vs. “=”

▶ “==” is a logical operation, testing equality
▶ “=”, like many other operating languages, assigns number to

another variable

Examples:
▶ 5 == 2 + 3
▶ a = 2 + 3
▶ gen ill_rate = Cp_ill / Ctot_p
▶ ill_rate == Cp_ill / Ctot_p

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: “==” vs. “=”

▶ “==” is a logical operation, testing equality
▶ “=”, like many other operating languages, assigns number to

another variable

Examples:
▶ 5 == 2 + 3
▶ a = 2 + 3

▶ gen ill_rate = Cp_ill / Ctot_p
▶ ill_rate == Cp_ill / Ctot_p

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: “==” vs. “=”

▶ “==” is a logical operation, testing equality
▶ “=”, like many other operating languages, assigns number to

another variable

Examples:
▶ 5 == 2 + 3
▶ a = 2 + 3
▶ gen ill_rate = Cp_ill / Ctot_p
▶ ill_rate == Cp_ill / Ctot_p

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compounded conditional expressions

What if we need more conditions to pick our sub-sample?
▶ For more than one restriction, we use and, “& ”

* For example,if we want to explore the income of samples aged
between 30 and 40, we should type

sum income if age >=30 & age <=40

▶ For more possibilities, we use or, “|”
* For example, if we want to explore the income of samples who

are either younger than 30 or older than 40, we should type

sum income if age <=30 | age >=40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compounded conditional expressions

▶ Generally, A&B is true if both A and B are true, A|B is true if
at least one of A and B is true.

* 4 < 5 & 4 ==5
* 4 < 5 | 4 == 5

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ count if age < 30 | age > 45

- 8

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ count if age < 30 | age > 45
- 8

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ list UqNr if hours >=65 & black ==1

- 1021027001901

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ list UqNr if hours >=65 & black ==1
- 1021027001901

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ What would you do if you want to know the average earnings
per week for female employees that work at least 40 hours a
week?

- sum earnings_week if female==1 & hours >= 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercise

▶ What would you do if you want to know the average earnings
per week for female employees that work at least 40 hours a
week?

- sum earnings_week if female==1 & hours >= 40

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Conditional evaluation

Scalar and matrices

Macros

Loops

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to Scalars and Matrices

▶ Scalars and Matrices are used for storing numbers in Stata.
▶ The information stored in scalars and matrices are different

from the “data” we import. And we will not see them in the
variable window.

▶ Scalars and Matrices are useful in storing results of estimation
commands: r-class and e-class command

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scalars

▶ Scalars can store a single number or a single string. Command
scalar can be used to generate a scalar, for example,

scalar a = 2*3
scalar b = “2 times 3 = ”

▶ Command display is used to display strings and values of
scalar expressions:

display b a

▶ The most common use of scalars is to store results of
estimation commands. (Or use it as a calculator)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Matrices

▶ Matrices can store several numbers or strings as an array. We
use matrix define to create a matrix and use matrix list to
print the matrix:

matrix define A = (1, 2, 3\4, 5, 6)
matrix list A

▶ We can also display of a specific element of the matrix

scalar c = A[2, 3]
display c

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to Scalars and Matrices

▶ Scalars and Matrices are used for storing numbers in Stata.
▶ The information stored in scalars and matrices are different

from the “data” we import. And we will not see them in the
variable window.

▶ Scalars and Matrices are useful in storing results of estimation
commands: r-class and e-class command

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intro to Scalars and Matrices

▶ Scalars and Matrices are used for storing numbers in Stata.
▶ The information stored in scalars and matrices are different

from the “data” we import. And we will not see them in the
variable window.

▶ Scalars and Matrices are useful in storing results of estimation
commands: r-class and e-class command

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

r-class command
▶ r-class commands: commands that analyze the data but do

not estimate parameters, like command sum.
▶ All r-class commands save their results in r(), which can be

extracted by command return list:

Figure 1: r-class command summarize

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

r-class command
Type help sum to obtain:

Figure 2: Interpret r-class command summarize

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

r-class command

▶ to exact the results in the r-class command, we use display
command:

display r(mean)

▶ if we want to save one of the results for future calculation, we
will use scalar to store the value:

scalar mean_earnings = r(mean)
scalar range_earnings = r(max) - r(min)

▶ IMPORTANT: return list has to follow the sum command to
return the statistics of The variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

e-class command

▶ e-class commands: commands that store estimate parameters
after commands like reg.

reg ln_wage_hr age age_sq female black edu

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

e-class command
▶ All e-class commands save their results in e(), which can be

extracted by command ereturn list:

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

e-class command

▶ To extract the coefficient matrix and variance-covariance
matrix, we would use:

matrix define B = e(b)
matrix define V = e(V)

display V[3,3]
scalar var_3 = V[3,3]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Conditional evaluation

Scalar and matrices

Macros

Loops

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Macros

▶ A macro is a string of characters that stands for another
string of characters.

* for example, in the previous exercise, we can use the macro
regressors in place of a list of regressors, age age_sq female
black edu.

▶ Macros can lead to code that is shorter, easier to read, and
that can be easily adapted to similar problems.

▶ Macros can be global or local (how broad this new definition
will be applied to)
▶ Global macro: across Stata do-files or throughout a Stata

session.
▶ Local macro: only within a given do-file or in the interactive

session.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Macros

▶ A macro is a string of characters that stands for another
string of characters.

* for example, in the previous exercise, we can use the macro
regressors in place of a list of regressors, age age_sq female
black edu.

▶ Macros can lead to code that is shorter, easier to read, and
that can be easily adapted to similar problems.

▶ Macros can be global or local (how broad this new definition
will be applied to)
▶ Global macro: across Stata do-files or throughout a Stata

session.
▶ Local macro: only within a given do-file or in the interactive

session.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Global macro

▶ Global macros are the simplest macro and are very useful.
▶ Global macros are defined with the global command:

global regressors age age_sq female black edu

▶ To access what was stored in a global macro, put the
character $ in front of the macro name:

reg ln_wage_hr $regressors

which is equivalent to

reg ln_wage_hr age age_sq female black edu

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to use global macros

▶ to create regressor lists for many regression equations.
* as we have seen in the example, we can use global macros

when fitting several models with the same regressor list
because they ensure that the regressor list is the same in all
instances.

* In addition, they make it easy to change the regressor list.
▶ to set constant key parameters through all models.

* for example, we can set macro nbreps the number of bootstrap
replications in all models.

▶ to represent working directory
* global macro main_path “/Users/gesun/Desktop/Bootcamp/”

So that we do not need to input the long path name every
time! (That is also why it is important to keep a clear and
reasonable sub-folder structure)

▶ You need to be very careful when using global macro

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How to use global macros

▶ to create regressor lists for many regression equations.
* as we have seen in the example, we can use global macros

when fitting several models with the same regressor list
because they ensure that the regressor list is the same in all
instances.

* In addition, they make it easy to change the regressor list.
▶ to set constant key parameters through all models.

* for example, we can set macro nbreps the number of bootstrap
replications in all models.

▶ to represent working directory
* global macro main_path “/Users/gesun/Desktop/Bootcamp/”

So that we do not need to input the long path name every
time! (That is also why it is important to keep a clear and
reasonable sub-folder structure)

▶ You need to be very careful when using global macro

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Local macros

▶ Local macro can be accessed only within a given do-file or in
the interactive session, which can be defined using local
command:

local regressors age age_sq female black edu

▶ To access the content of local macros, enclose the macro
name in a single quotes:

local regressors age age_sq female black edu
reg ln_wage_hr ‘regressors’

▶ Note that the left quote is not a single quotation mark, it is a
Backtick located at the upper left.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Should I use = to define a macro?
▶ We can define a macro in two ways:

local i 1
local i=1

and in this case, these two definition are equivalent.
▶ However, when the right hand side is an expression, the macro

will the be defined as the evaluation of the expression with
“=”, and it will be defined as the expression itself when there
is no “=”.

local i 1 + 1 // i will be replaced by 1+1
local i = 1 +1 // i will be replaced by 2

▶ Type the following command to see the difference:

display ”‘i’”

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Global or local?

▶ Local macros apply only to the current program and have the
advantage of no potential conflict with other programs.

▶ If you have a complex document structure, like many Do-files,
local macros are preferred to global macros. Always be careful
when using global macros, because the use of macro may lead
to implicit bugs.

▶ Local macros are especially useful for programming in Stata:
▶ Writing your own function.
▶ Loops

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Additional tips about applying macros

Scalar or Macro ?
▶ Using a scalar will usually be faster than using a macro,

because a macro requires convention into and out of internal
binary representation.

▶ However, scalar is dropped whenever “clear all” (not “clear”)
is used.

▶ Macro will continue to exist even after “clear all” (be careful!)

* Another small thing is if you write codes in the dofile instead
of the interactive command line, you need to run the local
definition command along with other commands that access
the local definition.(That is why local does not have that
much trouble.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Additional tips about applying macros

Scalar or Macro ?
▶ Using a scalar will usually be faster than using a macro,

because a macro requires convention into and out of internal
binary representation.

▶ However, scalar is dropped whenever “clear all” (not “clear”)
is used.

▶ Macro will continue to exist even after “clear all” (be careful!)

* Another small thing is if you write codes in the dofile instead
of the interactive command line, you need to run the local
definition command along with other commands that access
the local definition.(That is why local does not have that
much trouble.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Conditional evaluation

Scalar and matrices

Macros

Loops

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Loops

▶ Loops provide a way to repeat the same command many
times.

* Example:
Suppose we have South Bend monthly average temperature
data: tem1, tem2, tem3 tem4,, tem12, that documents the
temperature in Celsius. We want to create 12 new variables
that document the temperature in Fahrenheit.

* Possible solutions:
gen tem1_F = (tem1 * 1.8) + 32
gen tem2_F = (tem2 * 1.8) + 32

…
gen tem12_F = (tem12 * 1.8) + 32

▶ Loops can help us with this task by just one command
* really makes our life easier
* reduce the possibility to make mistakes

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Loops

▶ Loops provide a way to repeat the same command many
times.

* Example:
Suppose we have South Bend monthly average temperature
data: tem1, tem2, tem3 tem4,, tem12, that documents the
temperature in Celsius. We want to create 12 new variables
that document the temperature in Fahrenheit.

* Possible solutions:
gen tem1_F = (tem1 * 1.8) + 32
gen tem2_F = (tem2 * 1.8) + 32

…
gen tem12_F = (tem12 * 1.8) + 32

▶ Loops can help us with this task by just one command
* really makes our life easier
* reduce the possibility to make mistakes

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Loops

▶ Loops provide a way to repeat the same command many
times.

* Example:
Suppose we have South Bend monthly average temperature
data: tem1, tem2, tem3 tem4,, tem12, that documents the
temperature in Celsius. We want to create 12 new variables
that document the temperature in Fahrenheit.

* Possible solutions:
gen tem1_F = (tem1 * 1.8) + 32
gen tem2_F = (tem2 * 1.8) + 32

…
gen tem12_F = (tem12 * 1.8) + 32

▶ Loops can help us with this task by just one command
* really makes our life easier
* reduce the possibility to make mistakes

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

Three ways that a code is executed:
▶ Sequential
▶ Selection
▶ Iteration

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

Three ways that a code is executed:
▶ Sequential

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

Three ways that a code is executed:
▶ Selection

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming
Three ways that a code is executed:
▶ Iteration

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

Let’s try some looping mind game!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

▶ How to ask a computer to sum 1 to 100?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

▶ How to ask a computer to sum 1 to 100?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming
▶ How to ask a computer to sum 1 to 100?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Digression: Programming

▶ This is a Stretch Exercise!
How do you use computer to find all the divisors to 187?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Loops

▶ The syntax of loops in Stata is complex and hard to
remember exactly. My recommendation is that read the
document to find how to write loops properly whenever you
need to use loops in your code.

▶ There are three loops commands in Stata:
1. foreach: loops over items in a list.
2. forvalue: loops over consecutive values of numbers.
3. while: loops continues until a user-specified condition is not

met.
* The first two are intuitive, the while is more like loop we just

talked about

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Loops

▶ The syntax of loops in Stata is complex and hard to
remember exactly. My recommendation is that read the
document to find how to write loops properly whenever you
need to use loops in your code.

▶ There are three loops commands in Stata:
1. foreach: loops over items in a list.
2. forvalue: loops over consecutive values of numbers.
3. while: loops continues until a user-specified condition is not

met.
* The first two are intuitive, the while is more like loop we just

talked about

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Command: foreach

▶ Command foreach can loop over items in a list of variable
names or number.

▶ Suppose we have a list of variables named var_1, var_2,
var_3, and var_4, and we want to calculate the sum of these
four variables:

gen sum_var = 0
foreach var of varlist var_1 var_2 var_3 var_4 {

replace sum_var = sum_var + ‘var’
}

▶ In the foreach loop, we refer to each variable in the variable
list varlist by the local macro named var.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Command: forvalues

▶ Command forvalues loops over consecutive values. Consider
the same example in the previous slides:

replace sum_var = 0
forvalues i = 1 / 4{
replace sum_var = sum_var + var_‘i’

}

▶ In the forvalues loop, we refer to each variable via their
indexes, local macro ‘i’. As ‘i’ goes from 1 to 4, we add the
variable var_i to variable sum_var one by one.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Command: while

▶ Command forvalues loops over consecutive values. Consider
the same example in the previous slides:

local i 1
replace sum_var = 0
while ‘i’<=4 {
replace sum_var = sum_var + var_‘i’
local i = ‘i’+1

}

▶ In the following code, the local macro i is initialized to 1 and
then incremented by 1 in each loop.

▶ Command while is more flexible than foreach and forvalues.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

When to use Loops?

▶ to generate similar variables
▶ to recode a bunch of variables
▶ to apply the same bunch of codes to different datasets
▶ to append data for different years

When you go to copy and paste any commands to repeat them in
your do-file, you should be asking yourself: “Should I be using a
loop?” The answer is likely YES!

	Conditional evaluation
	Scalar and matrices
	Macros
	Loops

